WINTER PERFORMANCE OF AN OUTDOOR BIOFLOC PRODUCTION SYSTEM FOR CHANNEL CATFISH

Aquaculture America 2015 New Orleans, LA, 19-22 February 2015

Bartholomew W. Green

USDA Agricultural Research Service
Harry K. Dupree Stuttgart National Aquaculture Research Center
PO Box 1050, Stuttgart, AR 72160

BFT Production System

- Most biofloc systems are located in the tropics
- Increasing interest in biofloc systems at sub-tropical to temperate latitudes
 - Outdoor systems in particular
- To be viable at temperate latitudes, data gaps related to system and fish performance over the winter must be addressed

So, what happens during winter?

Objectives

To quantify changes in water quality and ammonia biotransformation capacity and channel catfish performance throughout the winter.

- Waters used for this experiment were retained from a just-completed freshwater BFT experiment that evaluated different levels of solids control
- Retained waters had high or low total suspended solids (TSS) concentrations
 - High TSS concentration in BFT can affect negatively culture animal performance
 - Removal of solids to 200–400 mg/L TSS is recommended
- Furthermore, waters used in the present experiment themselves will be retained for a follow-on study to evaluate re-use of BFT water during a second growing season

Experimental Design

- Completely randomized design
- Low (153.3 ± 39.5 mg/L) and high (790.0 ± 48.4 mg/L) TSS
- 3 replicates/treatment
- 6 HDPE-lined tanks (18.6 m², 15.7 m³)
- 1.865 kW (2.5 hp) regenerative blower per 3 tanks
- DO/Temp monitored continuously by data logger
- Bi-weekly DIN, DIP, T Alk, TSS, chlorophyll a, & am pH

Channel Catfish (Ictalurus punctatus)

		<u> </u>
Initial Weight (g/fish):	560.8 ± 5.8	611.3 ± 22.9

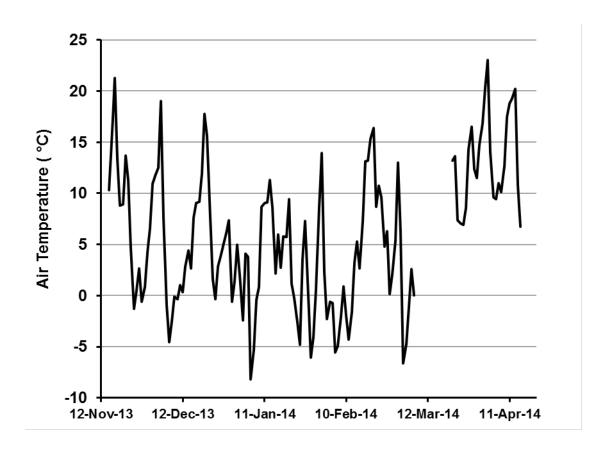
Low TSS

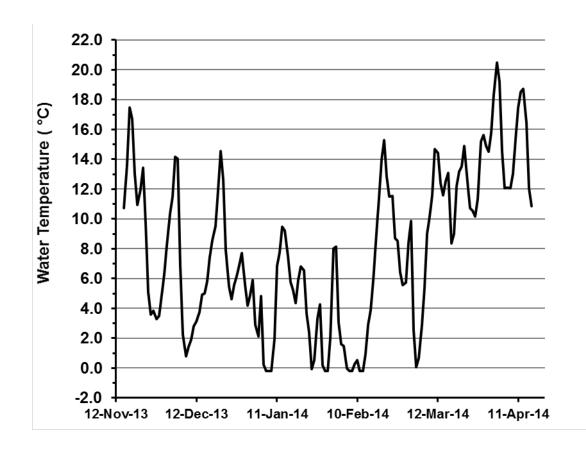
High TSS

Stocking Rate: 12.6 fish/m²

Initial Biomass (kg/m³): 7.8 ± 0.2 8.2 ± 0.5

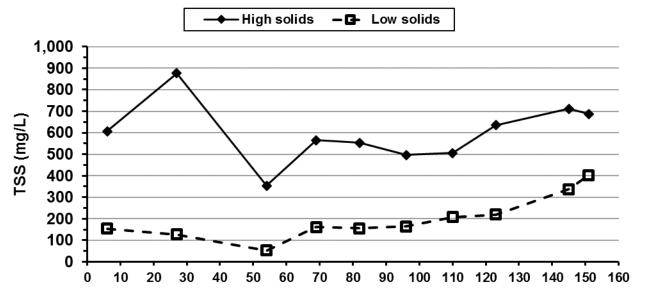
Stock Date: 14-15 November

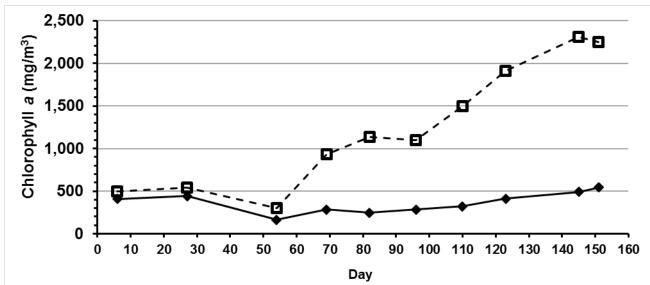

Harvest Date: 16 April


Duration: 152 d

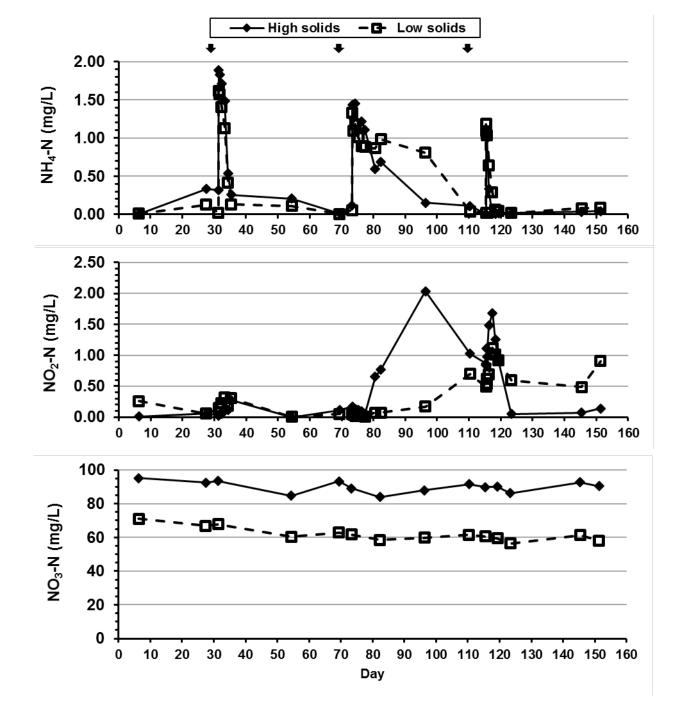
Feed: 32% protein fed to apparent satiation when water T ≥ 16 °C

Temperature

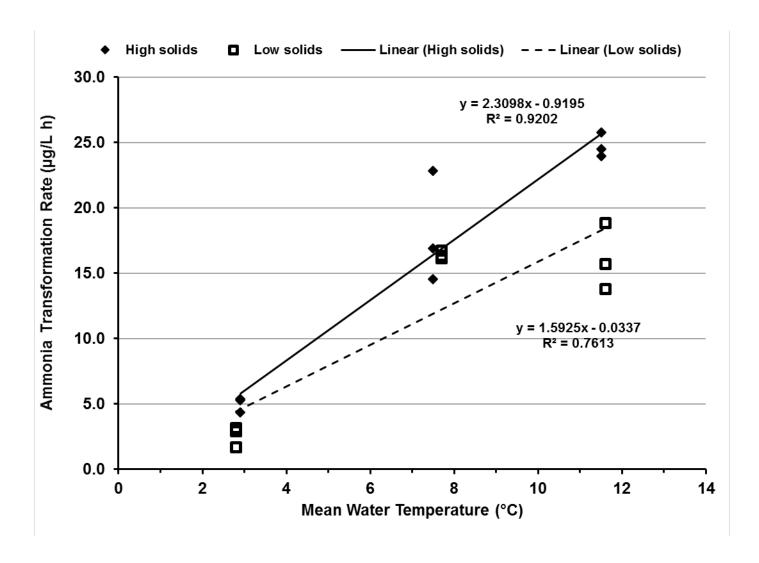



	(mg/L)			
Treatment	NH ₄ -N	NO ₂ -N	NO ₃ -N	PO ₄ -P
Low TSS				
Initial	0.01	0.29	70.97	20.34
Final	0.08	0.90	58.18	14.01
Pooled SE	0.03	0.11	6.89	1.41
Pr > F	0.119	0.016	0.014	0.034
High TSS				
Initial	0.00	0.01	95.18	33.08
Final	0.01	0.14	90.51	28.67
Pooled SE	0.04	0.06	8.97	2.43
Pr > F	0.046	0.173	0.685	0.185

	Chl a			
Treatment	(mg/m^3)	TSS	T Alk	pН
Low TSS				
Initial	493.5	153.3	132.0	8.19
Final	2,251.7	403.3	67.7	7.59
Pooled SE	369.6	11.8	16.8	0.03
Pr > F	0.077	0.002	0.089	0.004
High TSS				
Initial	409.7	606.7	176.6	8.14
Final	541.6	687.8	91.6	7.59
Pooled SE	65.6	140.9	18.2	0.08
Pr > F	0.091	0.705	0.030	0.010



Ammonia Bio-transformation


- Ammonium chloride added to tanks on three dates to increase TAN
 - 1.5 mg/L TAN (16 December 2013)
 - 1.25 mg/L TAN (27 January 2014; 10 March 2014)
- Water samples collected at 0 min, and after 15-60 min, 4 h (10 Mar only), 7-8 h, 24 h, 48 h, 72 h, 96 h, and 173 h (27 Jan 2014 only)
 - analyzed for TAN and NO₂-N; NO₃-N analyzed at beginning and end

Mean Water Temperature		
Spike Event	<u>T (°C)</u>	
Dec (d 31)	7.6	
Jan (d 73)	2.9	
Mar (d 115)	11.6	

Catfish Production

	Initial TSS Concentration		Pooled		
Variable	High	Low	SE	Pr > F	
Initial Weight (g/fish)	611.3	560.8	16.6	0.098	
Final Weight (g/fish)	598.8	579.1	24.4	0.599	
Initial Biomass (kg/m³)	8.2	7.8	0.4	0.490	
Final Biomass (kg/m³)	7.9	7.7	0.4	0.701	
Net Fish Yield (kg/m³)	-0.3	-0.1	0.1	0.146	
Survival (%)	99.9	99.7	0.4	0.701	

Summary

- low initial TSS concentration transitioned to a phytoplankton dominated system
- high initial TSS concentration remained a bacterially dominated system
- ability to bio-transform TAN was retained at low winter water temperatures and in the absence of sustained TAN input
- High biomasses of market-size channel catfish were maintained through the winter with high survival and in good condition
- Green (2015), Performance of a temperate-zone channel catfish biofloc technology production system during winter. Aquacultural Engineering 64, 60-67.

Acknowledgment

The technical assistance of Greg O'Neal and Paxton Harper is appreciated greatly. The assistance of Robert Dallas II, Dallas Group of America, in procuring the ammonium chloride is appreciated greatly. Mention of trade names or commercial products is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U. S. Department of Agriculture. USDA is an equal opportunity provider and employer.

